PDCA Member Profile: Don Foster of L.B. Foster

Vibratory Pile Installation Technique – Part III

The Pile Driver's Legal Corner

PROJECT SPOTLIGHT:
Charleston High School Renovation Project
Berminghammer the clean hammer.

Easy-start
Free-standing
Hydraulic Trip
Low Emissions
Ground Fueling
Remote Throttle
Sheet Pile Adapter
Impact Energy Monitor

see www.berminghammer.com for details

1 800 668-9432
Contents

Letter from the President
By Randy Dietel ... 2

Letter from the Executive Director
By Tanya Goble .. 4

2005 PDCA Board of Directors
and Committee Chairmen.. 9

Design of Cost-Efficient
Driven Piles Conference
Sept. 15-16, 2005 | Boston, Massachusetts 10

Benefits of Membership and
Membership Application.. 12

Member Profile:
Don Foster of L.B. Foster Company 16

The Vibratory Pile Installation
Technique – Part III .. 19

Project Spotlight:
Charleston High School Renovation Project 29

Open-End Diesel Hammers 34

The Pile Driver’s Legal Corner................................. 39

New Member List .. 45

Calendar of Events.. 46

Index to Advertisers .. 48
All presidents or heads of organizations like to have bragging rights, especially during their tenure. In this President’s Message I have two:

The first is in reference to our Third Professors’ Piling Institute, held again on the beautiful campus of Utah State University in Logan. I have attended all three and this one was the best yet. Not only were the 24 college professors who attended this year’s Institute very complimentary about the week-long course work, they were also excited and appreciative of the field activities.

This has got to be the best “bang for our buck” program PDCA does. For it is here, a grass-roots program, where we offer university professors printed course material to use in their classrooms as well as hands-on experience. The majority of these professors have had very little field experience with driven piles. Here, on the university campus, they got to witness the set-up of the equipment and driving of piles, and actually participate in running and monitoring both vertical and lateral load tests. They also got to witness and have hands-on experience taking soil core samples for analysis. If picture taking is any indication of their interest, then we hit a home run.

The second bragging point I would like to make is certainly not to my account, but to PDCA, and more particularly to the South Carolina Chapter of PDCA. It is my understanding through Harry Robbins and John King, that they have won another victory for driven piles over the original choice of another foundation system. Harry is vice president of PDCA this year and current president of the South Carolina chapter, based in Charleston. John King is vice president of the South Carolina chapter for 2005.

The Citadel football stadium was originally designed to be on stone columns with spread footings. When Harry and John found out about the project, they immediately asked for and obtained a copy of the soils report. By working in tandem, they were successful in getting an audience with the head of engineering at the Citadel. They discussed multiple projects in the local area, which were on driven piles and the practicality of them over other types. Next, they spoke to the State Engineer’s office, and they agreed that a driven pile cost comparison should be done. The structural engineer on the project also had to agree and he proceeded to do a redesign using prestressed concrete piles. Harry provided a sample specification for their review and the rest is history. The structure is going in on driven piles!

So, my final salvo in this text is that this local chapter has been a real asset to our national organization. They have proven to be successful in all aspects. My pitch to each of you as members of PDCA is to think about the opportunities that your company could enjoy if you were part of a local chapter of PDCA. Several areas of the country are very appropriate for developing a local chapter. The South Carolina Chapter of PDCA has once again proven that by working together, local pile driving companies can improve their share of the deep foundation market.

By Randy Dietel, PDCA President
Introducing the new line of 12 affordable and dependable hammers from Pileco, Inc.

These hammers redefine the name you’ve come to trust for all of your pile driving needs.

Tipping the scales in your favor with quality equipment & world class support.
2005 Professors Institute — Best One Yet!

By Tanya Goble, PDCA Executive Director

PDCA conducted its Third Professors Piling Institute June 19-24 at Utah State University in Logan to glowing evaluations from the 25 professors in attendance.

PDCA believes that professor education is one of the most important and effective activities that the association does. The Professors Institute is an intensive week-long program that covers all aspects of driven pile installation, design, and quality control. It is truly a unique program that blends practical, real work construction knowledge with academics. The objective is to ensure that engineering educators are presenting material in the classroom that will result in constructible and economic driven pile foundations. The attendees also receive comprehensive teaching materials and course outlines. Key topics in this year’s Institute included:

- Driven pile design process including ASD and LRFD methods
- Geotechnical response of driven piles (static analysis, set up, relaxation, group response)
- Pile types and pile driving equipment
- Subsurface investigations for driven pile foundations
- Wave mechanics, wave equations
- Lateral behavior of pile groups
- Computer workshops with GRLWEAP, DRIVEN and FB-PIER
- CAPWAP workshop
- Cost components and economics
- Field demonstrations of pile driving, dynamic measurements and static load testing

Since 2002, PDCA has delivered this program to approximately 75 professors representing more than 60 universities (see page 6) from around the country. We estimate that on average, each professor teaches foundation engineering courses to approximately 40 students every year. This adds up to 3,000 engineering students getting much better training on designing constructible and economic driven pile foundations every year!

The PDCA has many to thank for helping us put together and deliver this outstanding program.

The Professors Institute would not be possible without financial support from the PDCA membership. A list of this year’s sponsors is provided on page 8. These sponsors will also be featured in the 2005 PDCA Membership Directory. PDCA expresses its sincere thanks to these companies for their ongoing support of our programs.
PDCA sends a big thank you to Build, Inc., that once again generously contributed their equipment and manpower in difficult site conditions to help us provide an actual pile driving demonstration along with static load test and dynamic pile monitoring demonstrations. We also want to recognize Pile Dynamics, GRL Engineers, Campbell Scientific, and Jay Appedaile Drilling for their wonderful contributions as well. The field demonstrations are consistently mentioned by the attending professors as the highlight of the Professors Institute.

The Professors Institute instructors are well-known in industry and academia and PDCA is grateful for the time and energy they devote to the success of the program. This year's instructors included:

- J. Brian Anderson (University of North Carolina)
- Loren Anderson (Utah State University)
- Jim Bay (Utah State University)
- Steve Dapp (Dan Brown & Associates)
- George Goble (Goble Consulting LLC)
- Pat Hannigan (GRL Engineers)
- Van Komurka (Wagner Komurka Geotechnical)
PDCA also wants to thank Utah State University, Loren Anderson, Jim Bay, and especially Joe Caliendo for their tremendous efforts in pulling together another highly successful Institute! The Institute would not be possible without their commitment and access to the beautiful facilities that the university has to offer.

The Professors Institute has helped PDCA established excellent relationships with many university programs around the country. We encourage PDCA members to build upon these relationships by reaching out to their local universities. Many professors would love it if you offered to speak at their class or conducted a field demonstration for their students and you will find the door open to you. The competition is doing these things today. Please call PDCA headquarters if you would like contact information or an introduction.

PDCA and Utah State plan to continue to offer the Professors Institute in the future and hope to offer the next one as soon as 2007. Thanks once again to all who contributed to making this year’s Institute a big success!
Test the latest in Pile Driving Technology!

Immediate Availability for Rent, Lease or Sale!

BAUER Equipment USA
205 Wilcox Street
McKinney, TX 75069

Toll Free: 1-866-374 5574
Phone: 1-972-540 6361
Fax: 1-972-540 1411
E-Mail: info@bauerequipmentusa.com
Homepage: www.bauerequipmentusa.com

Leader in Advanced Foundation Technology
PDCA wishes to recognize the sponsors of the 2005 Professors Institute, without whom this important program would not be possible.

Platinum Sponsors

- Boh Brothers Construction Company
- Build, Inc.
- L.B. Foster Company
- Nucor-Yamato Steel Company

Gold Sponsors

- Ed Waters & Sons Contracting Company
- Foundation Constructors

Silver Sponsors

- Palmetto Piling
- Piledrivers, Inc.
- Piling Inc.
- TXI Chapparel Steel Co.

Bronze Sponsors

- Carolina Pole, Inc.
- GZA GeoEnvironmental, Inc.
- Menck, GmbH
- Mississippi Valley Equipment Company
- Northwest Pipe Company
- Parker Marine Contracting Co.
- Piling Products, Inc.
- S&ME
2005 PDCA Board of Directors & Committee Chairmen

Randy Dietel
President
P: (409) 945-3459
F: (409) 945-4318
P.O. Box 1847
Texas City, TX 77592-1847
randy@pilinginc.com

John Linscott
Director
P: (207) 799-8514
F: (207) 799-8538
99 Pleasant Ave.
South Portland, ME 04106
john.linscott@hbblemington.com

Education Committee
Chairman: Mark Weisz
P: (707) 562-4100
F: (707) 562-4106
P.O. Box 2195
Vallejo, CA 94592
education@piledrivers.org

Education Committee Members:
Charlie Ellis, Herb Engler, Jim Frazier,
George Goble, Van Hogan, Garland Likins,
John Linscott, Rusty Signor.

Environmental Committee
Chairman: John Linscott
P: (207) 799-8514
F: (207) 799-8538
99 Pleasant Ave.
South Portland, ME 04106
john.linscott@hbblemington.com

Environment Committee Members:
Bud Abbott, Jim Bay, Ed Hajduk,
Garland Likins, Barry Roth,
Joe Savarese, Warren Waite

Market Development Committee
Chairman: Michael F. Engestrom
P: (954) 384-4545
F: (954) 337-0831
772 Sand Creek Circle
Weston, FL 33327
marketdevelopment@piledrivers.org

Market Development Committee Members:
Dean Abbondanza, Stan Baucom,
Cliff Bengston, Dave Harper, Rory Kelly,
Dean Mathews, Scott Whitaker,
Max Williams

Technical Committee
Chairman: Dale Biggers
P: (504) 821-2400
F: (504) 821-0714
P.O. Drawer 53266
New Orleans, LA 70153
technical@piledrivers.org

Technical Committee Members:
Dale Biggers, Dan Brown, Joe Caliendo,
Charlie Ellis, Jim Frazier, George Goble,
Van Komurka, Garland Likins, John Linscott,
James H. Long, Dean Matthews, Joe Phillips,
Scott Whitaker.

Harry Robbins
Vice President
P: (843) 577-0545
F: (843) 577-0547
P.O Box 70986
Charleston, SC 29415
jhrobbins@aol.com

Rory Kelly
Director
P: (703) 978-2500
F: (703) 978-2908
5610-B Sandy Lewis Dr.
Fairfax, VA 22032
rkelly@skylinesteele.com

Finance Committee
Chairman: Trey Ford
P: (757) 497-3593
F: (757) 497-0031
4985 Euclid Road
Virginia Beach, VA 23462
finance@piledrivers.org

Finance Committee Members:
Wayne Waters, Jim Frazier,
Randy Dietel, Mark Weisz.

Mark Weisz
Secretary
P: (707) 562-4100
F: (707) 562-4106
P.O. Box 2195
Vallejo, CA 94592
mark@csmarine.com

Education Committee Members:
Charlie Ellis, Herb Engler, Jim Frazier,
George Goble, Van Hogan, Garland Likins,
John Linscott, Rusty Signor.

Trey Ford
Treasurer
P: (757) 497-3593
F: (757) 497-0031
4985 Euclid Road
Virginia Beach, VA 23462
finance@piledrivers.org

Tanya Goble
Executive Director
P: (303) 517-0421
F: (303) 443-3871
P.O. Box 19527
Boulder, CO 80308-2527
tgoble@piledrivers.org

Communications Committee
Chairman: Van Hogan
P: (904) 268-4419
F: (904) 260-9379
C: (904) 631-8309
6467 Greenland Road
Jacksonville, FL 32258
communications@piledrivers.org

Communications Committee Members:
Garland Likins, Doug Scaggs, Steve Whitty

Wayne E. Waters
Immediate Past President
P: (904) 268-4419
F: (904) 260-9379
C: (904) 631-8308
6467 Greenland Road
Jacksonville, FL 32258
wwaters@msn.com

Mike Elliot
Director
P: (904) 284-1779
F: (904) 284-2588
1058 Roland Ave.
Green Cove Springs, FL 32043
info@pile-eqp.net

Van Hogan
Director
P: (904) 268-4419
F: (904) 260-9379
C: (904) 631-8308
6467 Greenland Road
Jacksonville, FL 32258
communications@piledrivers.org

Garland E. Likins, Jr.
Director
P: (216) 831-6131
F: (216) 831-0916
4535 Renaissance Parkway
Cleveland, OH 44128
garland@pile.com

Tanya Goble
Executive Director
P: (303) 517-0421
F: (303) 443-3871
P.O. Box 19527
Boulder, CO 80308-2527
tgoble@piledrivers.org

Communications Committee
Chairman: Van Hogan
P: (904) 268-4419
F: (904) 260-9379
C: (904) 631-8309
6467 Greenland Road
Jacksonville, FL 32258
communications@piledrivers.org

Communications Committee Members:
Garland Likins, Doug Scaggs, Steve Whitty

Finance Committee
Chairman: Trey Ford
P: (757) 497-3593
F: (757) 497-0031
4985 Euclid Road
Virginia Beach, VA 23462
finance@piledrivers.org

Finance Committee Members:
Wayne Waters, Jim Frazier,
Randy Dietel, Mark Weisz.

Technical Committee
Chairman: Dale Biggers
P: (504) 821-2400
F: (504) 821-0714
P.O. Drawer 53266
New Orleans, LA 70153
technical@piledrivers.org

Technical Committee Members:
Dale Biggers, Dan Brown, Joe Caliendo,
Charlie Ellis, Jim Frazier, George Goble,
Van Komurka, Garland Likins, John Linscott,
James H. Long, Dean Matthews, Joe Phillips,
Scott Whitaker.
We have seen dramatic developments in piles and pile driving equipment in the past 30 years. Quality control devices have improved the reliability of driven piles so that lower factors of safety can be justified. Higher strength pile materials are available at little or no cost increase. We have a better understanding of pile behavior, and the result is a product vastly superior and more cost-effective than alternative piling methods.

This seminar is intended for geotechnical engineers, structural engineers, contractors, and college professors interested in taking advantage of opportunities in driven pile design and installation to reduce the cost of their deep foundation designs.

General Information

The 1-1/2 day seminar will present the technical basis for understanding, analyzing, and controlling pile driving. Educational material on the process of designing and installing driven piles is provided. Examples of design applications of high design loads will be presented and the potential for the use of high design loads and lower factors of safety in the PDCA Code will be discussed. Choosing design and installation methods that minimize the overall cost of the foundation system are a key focus of the conference. You will receive practical knowledge and tools that you can immediately put to use to save time and money on your next project.

Attendees will receive a certificate verifying 1.1 CEUS or 11 PDHS.

Registration & Fees

Fees are $275 if payment is received by Friday, Sept. 9, 2005 and $300 after that date. The registration fee includes: the official Book of Proceedings, session handouts, copies of the PDCA Code Books, “Recommended Design Specifications for Driven Bearing Piles, Third Edition,” and the brand new “Recommended Installation Specifications for Driven Bearing Piles, First Edition,” along with coffee breaks, lunch, and evening reception on Thursday.

Tabletop exhibits are also available. The fees are $550 if payment is received by Friday, Sept. 9 and $600 after that date. The fee includes conference registration for one person.

Schedule

Thursday, Sept. 15, 2005 – 5:00 p.m.
Friday, Sept. 16, 8:00 a.m. – 12:00 noon

Location

The conference will be held at the Sheraton Framingham Hotel
1657 Worcester Road
Framingham, Massachusetts, 01701

Reservations can be made by calling (508) 879-7200. The deadline for the guaranteed conference room rate of $129 is Aug. 24, 2005. Ask for the PDCA conference room block. After date, the room rate is available on a space-available basis only.

Program Schedule

More details are available at www.piledrivers.org

Thursday, Sept. 15, 2005 - Grand Ballroom North

8:00 – 8:30 a.m.
Registration & Coffee in Exhibit Area

8:30 – 8:35 a.m.
Welcome and Introduction to the Seminar – Randy Dietel, PDCA President

8:35 – 9:30 a.m.
“Driven Pile Design Process,” – George Goble, Consulting Engineer
The design process for driven piles will be reviewed and compared with other deep foundations. Both ASD and LRFD design methods will be discussed.

9:30 – 10:30 a.m.
“Comparing Static Axial Capacity between Drilled and Driving Piles,” – Dan Brown, Auburn University
This presentation will provide an overview of the differences in static capacity between drilled and driven piles. The effects of installation, time dependency, displacements required to mobilize capacity and field verification of capacity during construction will be discussed. Select case histories will be examined and soil conditions in which each foundation type may be used will be identified.

10:30 – 11:00 a.m.
Break

11:00 – 12:00 p.m.
Background information on wave equation analysis and practical applications will be discussed, along with dynamic testing and analysis of driven piles.

1:00 – 1:45 p.m.
“Wantagh Parkway Bascule Bridge to Jones Beach, Long Island,” - Stephen Borg, New York Department of Transportation
The bascule leaf pier caps were constructed using large diameter pipe piles and the approach spans are supported by pre-stressed concrete cylinder piles. PDA testing was used during the driving of the pipe piles and cylinder piles and velocity measurements were taken on the hammer ram. Capacity verification of the piles was done using the PDA measurements before and after soil clean-out and CSL testing was used to evaluate concrete quality.
Thursday, Sept. 15, 2005 (continues)

1:45 – 2:30 p.m.

“Incorporating Setup into the Design and Installation of Driven Piles,” – V. Komurka

Accounting for setup in pile design can result in the use of smaller hammers, smaller pile sections, shorter piles, higher capacities, and therefore more economical installations than otherwise possible. A methodology and case history are presented which utilize dynamic monitoring during initial driving and restrike testing to characterize unit set-up distribution as a function of depth, allowing for development of depth-variable penetration resistance criteria.

2:30 – 3:00 p.m. Break

3:00 – 3:45 p.m.

“Support Cost Components of Driven Pile Foundations,” – Van Komurka, Wagner Komurka Geotechnical Engineers

Foundation support cost, expressed in terms of cost per allowable load, is a normalized way to evaluate cost-effectiveness of foundation alternatives. The individual cost components of a driven pile foundation are presented along with methodologies to maximize the cost-effectiveness of the overall foundation system.

3:45 – 4:30 p.m.

An existing power plant was built on drilled shafts. A major expansion designed under a new building code required much larger seismic demand. A flexible foundation design based on driven piles instead of drilled shafts saved $7M.

4:30 – 5:00 p.m.

Pile Design & Installation Codes – PDCA Technical Committee

To address the many problems that contractors see with pile installation specifications for private sector work, PDCA has developed its own set of recommended specifications. Attendees receive a free copy of this new spec which will be presented and discussed.

5:00 – 6:00 p.m. Networking Reception

Friday, Sept. 16, 2005

8:00 – 8:45 a.m.

“High Capacity Piles,” Peter Osborn, FHWA

High capacity piles continue to gain interest with the transportation community in support of national initiatives such as accelerated construction. The benefits of high capacity piles are discussed and recent highway projects that have used high capacity piles are reviewed. Load testing data and cost comparisons will be presented.

8:45 – 9:30 a.m.

“Pile Driving Vibrations”

Ed Hajduk, Wright Padgett Christopher, Inc.

Methods of measuring & monitoring vibrations during pile driving are discussed and best practices are described using real world case studies. Comparative data is presented and conclusions are drawn on where vibrations may be critical.

9:30 – 10:00 a.m. Break

10:00 – 10:45 a.m.

“A Lesson Learned from Two Bulkhead Failures,”

Richard Hartman, Hartman Engineering

Investigation of two separate sheet pile bulkhead failures indicates that a common design procedure should be modified. The two investigations will be described. Conclusions will be explained and simple preventive measures presented.

10:45 – 11:45 a.m.

“The Use of FB-Pier for the Analysis of Pile Groups,”

J. Brian Anderson, University of North Carolina

FB-Pier is a computer program that analyzes a pile group, cap, and pier for a general set of loads, including loads that induce both axial and lateral loads on the pile. This program is a very powerful tool for foundation design making it possible to perform analysis and re-design quickly and efficiently. Examples will be shown.
We are the premier association for pile-driving contractors

The PDCA was founded in 1996 to promote use of driven-pile solutions in all cases where they are effective. We strive to build and maintain working relationships among end users, manufacturers, government agencies, educational institutions, engineers and others involved in the design, installation and quality control of the driven pile.

We are dedicated to advancing the driven pile

As the only organization solely dedicated to pile-driving contractors, we know that you understand the superiority of the driven pile in most applications. We are the only association addressing the intrusion of non-driven solutions that take away business from the driven-pile contractor. The PDCA understands that to survive in today's competitive marketplace, a pile-driving contractor must strive to stay abreast of the latest trends and technologies in the industry. That is why we maintain close ties with the world's leading suppliers to the industry. It's why we provide a broad range of educational programs for university professors, practicing engineers and contractors. And, it's why more and more contractors, engineers and suppliers are realizing that the PDCA significantly increases their value in the marketplace.

We are a direct link to decision makers

Major manufacturers take an active role supporting the PDCA. At our conferences, we bring together the world's leading design manufacturers and technical application experts to assist you in advancing the driven pile as a superior product.

The PDCA works closely with the technical community to format design codes and installation practices. We offer seminars throughout the country for engineers and educators on the capabilities and advantages of the driven pile. We also work with agencies, such as the Federal Highway Administration and state DOTs, which develop specifications for highway building and other infrastructure projects that use driven piles.

We offer timely, valuable services

The PDCA improves your company's bottom line, as well as your stature in the construction industry, through a variety of programs and services:

Job Referrals

We are the only organization that provides contractor referrals to end users of driven piles. You tell us where you will drive piles and we will refer you to end-users. We also provide referrals to our supplier and technical members.

Peer-to-Peer Opportunities

With more than 100 contractor members, networking opportunities abound at the PDCA. Whether at our Winter Roundtable, our regional seminars or by just picking up the phone, you'll develop long-lasting professional relationships and friendships in the industry.

General Membership Information

MEMBERSHIP BENEFITS

MEMBERSHIP

JOIN NOW
Annual Membership Directory

As a member, you'll receive PDCA's annual membership directory of our contractor, supplier and technical members. Your company is listed along with the piling solutions you employ and states in which you work. This directory is provided throughout the year to construction users on a complimentary basis.

Educational Conferences and Meetings

The PDCA offers cutting-edge education for contractors, engineers, geotechs and anyone else interested in the driven pile and its applications at two major conferences annually. Members receive discounts on exhibit and registration fees.

- The Winter Roundtable, held each February since 1997, is a nationally recognized conference that brings together leading technical experts, suppliers to the piling industry and contractors. This conference focuses on the key issues faced by pile-driving contractors and features discussions and presentations as well as an extensive exhibit area.

- The Design and Installation of Cost-Efficient Driven Piles Conference (DICEP), held each September since 2000, is a nationally recognized two-day conference that brings together geotechnical and design engineers, college professors and contractors to discuss the latest trends in understanding, analyzing and controlling piling costs.

Industry Development

The PDCA continually strives to expand market share for the driven pile. The PDCA sponsors the College Professors Piling Institute, held at Utah State University in Logan, Utah. Up to 25 professors, from major engineering schools, are invited to participate in an intensive, week-long program that presents them with the latest concepts in driven-pile design, installation and quality control. Some of the leading faculty in the deep foundation field has attended the institute to date. The program supplies the educators with the tools and knowledge to be able to teach their students about the advantages of the driven pile. It promises to have a long-term impact on market share for the driven pile.

Publications and Reference Materials

As a PDCA member, you will receive our quarterly publication, “Piledriver,” which presents articles on issues and trends of interest to our industry. As a member, you’ll receive discounts on advertising in the magazine.

All PDCA members receive a complimentary copy of the PDCA’s codebook, “Recommended Design Specifications for Driven Bearing Piles,” now in its third edition. This book covers all required guidelines for driven piles and includes a suggested bid and payment schedule.

The PDCA also sells “The Pile Design Manual,” an FHWA manual on the design and construction of driven piles. Order forms are available on the PDCA Web site.

Connect Worldwide at www.piledrivers.org

The PDCA’s newly redesigned Web site at www.piledrivers.org lets you research the latest trends in the industry and find direct links to manufacturers, suppliers, engineers and others. PDCA members receive a free listing in our member search area, which is being used by an increasing number of end users to find pile driving contractors and services. Our forums area makes it easy for you to connect with others to discuss issues and problems.

Leadership Opportunities

Membership in the PDCA provides opportunities for recognition and leadership. Positions are available on the PDCA board of directors and various committees that impact the industry. The PDCA recognizes noteworthy contributions to the industry with our “Driven Pile Project of the Year” award, giving opportunities for high profile recognition.

Membership is available to you

There is strength in numbers and we, at the PDCA, need to count your company when telling government agencies, engineers and suppliers that we are interested in keeping your business viable and in growing market share for the driven pile. We need your ideas and efforts in working together toward a common goal: the use of driven-pile solutions. You can contribute your expertise and assist the Association in developing:

- A greater focus on safety
- The quality of driven pile products
- The formatting of codes and specifications for the driven pile
- Support for a program to help educate students in the use of driven piles

Join today. Be part of a growing and vibrant organization the will play a key role in the future of deep foundations. Support your industry by completing the membership application in this issue. You will immediately begin to enjoy benefits of membership. ▼
Step 1: Select Membership Type

I wish to apply for the following membership status (check one):

- Contractor ❑ (Annual Gross Sales >$1 Mil./year: $700/year).
 ❑ (Annual Gross Sales <$1 Mil./year: $350/year)

A Contractor Member is defined as a specialty subcontractor or general contractor who commonly installs driven piles for foundations and earth retention systems. Includes one primary membership. Secondary memberships are $75 each.

- Associate ($700/year)

Associate Members of the Association shall consist of firms or corporations engaged in the manufacture and/or supply of equipment, materials, testing or other services to the pile driving industry. Secondary memberships are $75 each.

- Technical Affiliate ($95/year)

Technical Affiliate Members of the Association shall consist of individuals who are involved with the design and installation of driven piles or in teaching the art and science of pile design and installation. They may be employed engineers, architects, government agencies, or universities. Employees of contractors are not eligible to become Technical Affiliate Members. Note: Technical Affiliate Membership category is for individuals only. For a company listing in the directory and on the Web site, you must join as an Associate Member.

- Retired Industry Member ($50/year)

A Retired Member shall be defined as any individual who has reached retirement age as defined by U.S. law, who has left active employment and who wishes to remain a member.

I am retiring as a: ❑ Contractor ❑ Associate ❑ Technical Affiliate

Step 2: Demographic Information

Company Name ________________________________ Phone _______________________________
Your Name ________________________________ Fax _______________________________
Address ________________________________ Email _______________________________
City/State/Zip ________________________________ Home Page _______________________________

Step 3. Method of Payment

Attached is my payment of $___________ for annual dues.

- I understand that dues are due annually on December 31 and, that if I joined PDCA after March 31, I may be entitled to a prorated dues amount for the subsequent year only.

 I am making payment in full by

- Check # ___

- Credit Card: ❑ MasterCard ❑ Visa ❑ American Express

 Card Number: __ Expiration Date:___________________________
 Name as it appears on card: ________________________________ Signature: ________________________________

Please send this completed application to: PDCA
P.O. Box 19527, Boulder, CO 80308-2527 | Phone: 303-517-0421 | Fax: 303-443-3871 | www.piledriversons.org
Applications Systems
- Aluminum Sheet Piles
- Steel Pipe Piles
- Timber Piles/Treated Lumber & Timbers
- Coatings & Chemicals
- Steel Sheet Piles
- Concrete Piles
- Structural Steel
- Vinyl Sheet Piles
- Composite Piles
- Synthetic Material Piles
- Other Structural Materials
- Other

Equipment
- Air Compressors
- Hammers
- Specialized Rigs & Equipment
- Cranes
- Hydraulic Power Packs
- Other
- Drill Equipment
- Leads & Spotters
- Drive Caps & Inserts
- Pumps

Services
- Consulting
- Marine Drayage
- Vibration Monitoring
- Design
- Surveying
- Other
- Freight Brokerage
- Testing
- Geotechnical
- Trucking

General
- Rental
- Sales
- Other
- Other

C. Technical Affiliate Only (check all that apply)
- Analysis
- Civil & Design
- Consulting
- Educational/Association
- Geotechnical
- Materials Testing
- Pile Driving Monitoring
- Surveying
- Vibration Monitoring
- Other

Step 4. Geographic Areas Where Contracting, Products and Services Available
(All applicants check all that apply)
- All States
- CT
- ID
- MD
- NE
- NY
- SD
- WI
- AK
- DC
- IL
- ME
- NC
- OH
- TN
- WV
- AL
- DE
- IN
- MI
- ND
- OK
- TX
- WY
- AR
- FL
- KS
- MN
- NH
- OR
- UT
- Canada
- AZ
- GA
- KY
- MO
- NJ
- PA
- VA
- Mexico
- CA
- H
- LA
- MS
- NM
- RI
- VT
- Europe
- CO
- IA
- MA
- MT
- NV
- SC
- WA
- Global

Step 5. Sponsorship: Who told you about PDCA?
Member Name __

Step 6. Method of Payment
Attached is my payment of $___________ for annual dues.
- I understand that dues are due annually on December 31 and, that if I joined PDCA after March 31, I may be entitled to a prorated dues amount for the subsequent year only.

I am making payment in full by

- Check # __

- Credit Card: ☐ MasterCard ☐ Visa ☐ American Express

Card Number: ___ Expiration Date: ______________________

Name as it appears on card: ___________________________ Signature: ____________________________

Please send this completed application to: PDCA
P.O. Box 19527, Boulder, CO 80308-2527 | Phone: 303-517-0421 | Fax: 303-443-3871 | www.piledrivers.org
PDCA Member

Don Foster Sees Endless Possibilities for L.B. Foster

PDCA wishes to recognize and thank Don Foster and L.B. Foster Company for their sponsorship of the 2005 PDCA Professors Piling Institute.

By Amber N. Billman, Piledriver Editor

After retiring from a rewarding 24-year career with United States Steel Corporation, Don Foster could not pass up the opportunity to work for L.B. Foster.

Don Foster is the managing corporate officer of L.B. Foster Company’s piling, fabricated bridge products, and precise custom bridge fabricating divisions. Don joined L.B. Foster in 2004 after a successful 24-year career with United States Steel Corporation. He retired from his position as President of U.S. Steel International to become L.B. Foster’s Executive Vice President of Construction Products. During his short tenure, Don has already expanded the group’s market share with the introduction of innovative new piling and construction products.

For more than 100 years, L.B. Foster has delivered the construction products necessary to build and maintain the nation’s infrastructure. The company was founded in 1902 by 20-year-old Lee B. Foster who financed his company with a $2,500 loan from his father. Today, L.B. Foster remains a quality manufacturer, fabricator, and distributor of products for the transportation, construction, utility, and energy industries. The company markets its products worldwide to industries requiring rail and accessories; sheet, pipe, and H-piling; bridge decking and highway products; earth retention systems and soundwalls; precast concrete buildings and threaded pipe and coated pipe. The company tries to stay abreast of technology issues in several ways; through their customers, through their international supplier network, and through the various trade associations to which they belong.

Don Foster understands the importance of these associations, particularly PDCA. “PDCA provides us a number of useful seminars and professional opportunities to learn and advance our knowledge in the areas of foundations, pile driving, and equipment productivity,” he says. “Towards this end, in our own operations, Foster strives for continuous improvement in such critical areas such as customer satisfaction, lean manufacturing techniques, and employee training and development.” Don Foster has also relied on the benefits of PDCA membership to help guide him toward successful product and market decisions. “Our customers, our extensive international supplier network, and our membership in trade associations, such as PDCA, keep us abreast of important piling and construction industry technology issues,” Don noted.

L.B. Foster Company strives to bring innovative, creative, and cost effective foundation solutions to owners, engineers, and contractors by relying on strategic alliances to expand its product and service offerings. Don has furthered L.B. Foster’s key partnerships with Chaparral Steel, TKB Hoesch, Piene Piling, PND Engineering Consultants, Hartman Engineering, and Pile Pro Extruded Connectors. Foster also maintains important working relationships with Northwest Pipe, ACIPCO, Maverick Tube, Stupp Corporation, Copperweld Corporation and SCCI of Florida.

Don graduated from Indiana University in 1978 and pursued a Masters in Management from Benedictine University in Illinois in addition to attending the Executive program at the University of Michigan. In addition to his educational background, Don brought the many skills he learned in his extensive career prior to L.B. Foster to the company. “The opportunity at L.B. Foster was hard to pass up. The company is on the verge of some very exciting developments. There is a new strategic direction and a great team spirit. When you have quality people, the possibilities are endless,” he says.

Don has been married to his wife, Eileen for 25 years, and they have three children: Doug, Sara, and Brad. “Besides being committed to my marriage and my children, we try to serve at our church, Orchard Hill Church in Wexford, Pa. I also serve on the board of the Light of Life Mission and the Pine Richland Opportunity Fund,” he adds.
L.B. Foster Projects

L.B. Foster Company provided Chaparral-manufactured flat sheet piling for the construction of an Open Cell dock facility at the Port that required 300 tons of PS 31 and 150 tons of PS 27.5 flat web steel sheet piles. The project was originally designed to use Z sheet piling to rehabilitate an existing old dock and bulkhead structure. General contractor, American Construction Company, and the Port’s agencies discovered that the fill behind the existing structure was contaminated. After determining the high costs associated with removal of this type of structure, the Foster team and PND’s Todd Nottingham suggested an alternative Open Cell piling system to encapsulate the old dock and bulkhead, isolating the hazardous material and producing a substantial cost savings to the customer.

L.B. Foster also recently supplied 400 tons of sheet piling for the Kuparuk River Bridge Project in Alaska where unique design and construction challenges included extreme environmental conditions, vehicle weights approaching 4 million pounds, impact loading from thick river ice, and discontinuous permafrost soil conditions. Another current Northwestern project required the delivery of 600 tons of pipe piling to Ruskin Construction, Ltd. for use on the new Kodiak Pier 2 for the City of Kodiak, Alaska.

Direct from a producer…

Wolmanized® Wood Piling

CCA-treated piling for foundation and marine use. Common sizes in inventory: quick production on larger sizes.

Also available:
• Wolmanized® wood timbers and bulkheading material
• Vinyl sheet piling, round piling, timbers and lumber needs

Carolina Pole Inc.
Division of Cox Industries
Eutawville, SC / Leland, NC
803-492-7728
andreaecpi@aol.com
www.coxwood.com
When it comes to pipe inventory, Frank's is considered the largest, most complete, privately owned large O.D. pipe distributor in the U.S. Its abundant inventory of over 50,000 tons of large O.D. heavy wall pipe is stored on over 175 acres of pipe yard in Frank’s four major stock points - Lafayette, Houma, the Port of Iberia, LA and Alvin, TX. These strategic locations offer easy access to the company’s primary marketing areas along the Gulf Coast.

Frank’s inventory and services include:

Pipe procurement and inventory management

Inventory of line pipe in diameters ranging from 14” thru 72” in grades API 5L Gr. B, X-42, X-52, X-56 and X-60

Larger diameters ranging from 48”- 72” in grades ASTM A 36, API 2H Gr.50 and ASTM A 572 Gr. 50

Overseas pipe suppliers: JFE, Seah, Sam Kang, Nippon, Sumitomo, EEW, Vallourec, Mannesmann and Corus

Domestic Pipe Suppliers: SAW Pipes and Berg Steel

In addition to a vast pipe inventory, Frank’s sets itself apart from the competition by offering a myriad of custom welding services in its fabrication facilities.
Soil Behavior in the Vicinity of a Vibro-Driven Pile

The purpose of using vibrators to drive piles in cohesionless soils is to put the soil volume closest to the pile into a state where it loses its inner shear strength. Several authors have (incorrectly) implied that the shear strength reduction is “primarily” related to the soil mechanism termed liquefaction. However, it should be noted that the shear strength reduction is also present during artificial conditions, such as in laboratory tests using air-dried sand [1], [11], [12], and [13]. From these tests it can be concluded that soil liquefaction is not the “primary” explanation of the shear strength reduction.

Reduction of Soil Shear Strength

As a vibro-driven pile undergoes a pure axial-vibratory motion having an amplitude of 0.1<5<0.9 [in.] and an acceleration amplitude of 8<ε<20 g, it interacts with the neighboring soil volume. This dynamic interaction introduces inertia forces \(F_I = \gamma z(a/g) \) to the soil in the vicinity of the pile. The inertia forces create a dynamic motion of the individual soil grains (see Fig. 7b) and when the peak acceleration in the soil exceeds ~1.0 g (approximately gravity) the grains start to experience short phases/moments of “free fall.”

In other words, as the acceleration amplitude within the soil volume exceeds a site-specific threshold value, which corresponds to the initial overburden pressure \(\sigma_v = \gamma z \), the confining stress drops to nearly zero during parts of each steady-state loading cycle. This implies that the inner shear strength reduction is instead “primarily” related to short-time drops of the inter-granular contact \(N \) and shear \(T \) forces between the grains, as illustrated by Fig. 7.

Even if the acceleration-induced motion of the individual grains appears to be the “primary” mechanism behind the shear strength reduction, it is of course evident that the induced excess pore-pressure during field related conditions is undoubtedly of great assistance in reducing the soil resistance. Test results by [14] and [15] show that the induced “large” cyclic shear strains \(\gamma_c \sim 10^1 \), together with volume changes \(\Delta e \) within the soil volume close to the pile, induce equally cyclic excess pore-pressure changes \(\Delta u \). However, the developed excess pore pressure in the vicinity of the pile does not necessarily have to achieve a state of liquefaction. Instead, it seems more realistic that the induced excess pore-pressure puts the soil volume close to the pile in a state best described by the soil mechanism termed “cyclic mobility.”

Dynamic Soil Resistance of Vibro-Driven Piles

The Soil Resistance during Vibratory Driving (SRVD) consists of the sum of: the dynamic forces at the pile toe \(R_t \) and along the shaft \(R_s \), together with interlock-friction \(R_c \) when driving sheet piles (see Fig. 5).

Fig. 8a illustrates the constitutive relationship between toe resistance and displacement (\(R_t-u \)) of a vibro-driven pile, somewhat simplified but greatly similar to the few published field measurements of the actual (\(R_t-u \)) relationship. Field measurements of the (\(R_t-u \)) curve do not, in reality, display a linear relationship, but instead they display a concave, upward, strain-harden, loading and unloading curve, without tendency to reach the typical plateau of equivalent impact curves, e.g., Smith soil model of an impact driven pile toe.

Fig. 8b illustrates the constitutive relationship between shaft resistance and displacement (\(R_s-u \)). The illustrated
The curve describes a general pattern (with a great deal of simplifications) that varies symmetrically between its positive loading and negative unloading value, ±R\textsubscript{max}. Note the higher unloading stiffness k\textsubscript{u} compared with the loading stiffness k\textsubscript{l}, which is explained by hysteresis of the induced cyclic shear strains, which are largely irreversible.

It is well known amongst practitioners that the magnitude of the dynamic interlock-friction force R\textsubscript{c} quite frequently overshadows the sum of both dynamic toe and shaft resistance. However, intuitively, the direction and variation of the interlock-friction force R\textsubscript{c} should be correlated with the pattern of the shaft resistance (R\textsubscript{s} – u) curve.

Theoretical Prediction of SRVD

From an engineering point, being able to estimate the magnitude of the SRVD (read R\textsubscript{c} and R\textsubscript{s}) versus depth z is the key for a reasonable prediction of the penetration speed v\textsubscript{p}. Vibro-drivability, in a broad sense, is defined by the shape of the (v\textsubscript{p} – z) curve as a result of the dynamic equilibrium of the vibro/pile/soil system, schematically illustrated by Fig. 5.

The difficulty in predicting the magnitude of encountered SRVD boils down to the lack of appropriate soil investigation methods that duplicate the conditions in the vicinity of a vibro-driven pile. Current standard investigation methods devised to characterize the magnitude of SRVD include: i.) probing tests (CPT and SPT), ii.) sampling tests and iii.) laboratory tests (tri-axial, resonant column, and direct shear tests). All these have been developed to produce input for static design issues, and are obviously not suitable to quantify the magnitude

Fig. 5. Forces at play when driving piles (free-hanging vibro equipment), after [16].
of SRVD. However, promising techniques do exist. One of the more recent techniques can be found in [15].

Countries such as Belgium, the Netherlands, Germany, France and Sweden, to name a few, are places where the majority of steel sheet piles are installed with vibratory drivers/extractors, several prediction methods have emerged regarding the choice of minimum required vibro-driving force to drive a specific sheet pile to designated design depth in a specific soil profile. The more notable techniques, all mentioned in [16], are based on results of CPT, where the quasi-static cone q_c and sleeve friction f_s have been empirically reduced to levels resembling the dynamic soil resistance in the vicinity of a vibro-driven pile. The author applies the following methods, depending on whether it's an on- or offshore-related job.

Onshore Jobs

The SRVD is estimated according to the Vibdrive model that was initially developed by [18], and has undergone refinements by [19] and [20]. The SRVD estimate is rather simple; it's based on the soil driving unit resistance at toe q_d and along shaft τ_d that are correlated with pile geometry. Estimated $R_{t,\text{max}}$ and $\pm R_{s,\text{max}}$ are then modeled as constants both with respect to time and displacement (see Fig. 8). However simple or not, the model does incorporate the two main soil related factors, i.e., i.) the cyclic motion of grains due to vibratory accelerations, and ii.) induced pore-pressure build up. Furthermore, the model is based on the assumption that the vibro-unit and pile behave as a rigid body, and therefore allows for application of Newton's second law of motion to the moving masses. The theoretical driving force amplitude is calculated according to Fig. 3b, using rated values of f_d, M_e, and an assigned value of $\xi<1.0$. The penetration speed v_p is obtained by integrating the net down-ward and up-ward acceleration over a complete cycle ($T=1/f_d$).

Offshore Jobs

The procedure to estimate SRVD...
is a bit more elaborate compared with above description for onshore-related jobs. Estimation of $R_{t,max}$ and $\pm R_{s,max}$ are instead calculated according to [21], which is an empirical model, based on decades of measurements of mobilized SRD for impact driven pipe piles in marine deposits. The theoretical driving force amplitude is calculated in the same manner, with the difference that the system efficiency is assigned a value of $\xi<1.0$. The penetration speed is calculated according to the same procedure as described above.

It might be argued that the above-mentioned methods of predicting the SRVD are a bit crude, and that it’s more appropriate to apply a time-dependent, non-linear method to analyze vibratory installation of piles. However, the main weakness of these methods is the accuracy of the constitutive components of the proposed use of non-linear soil models (e.g., Fig. 8b). The dynamic soil-related mechanism in the vicinity of a vibrating pile must therefore be thoroughly understood and accurately simulated in order to produce reasonable results, and these conditions have not yet been met. However, with the popular but simple elasto-plastic Smith model for soil response of impact driven piles in mind, it will probably take some time before anything sensible will emerge.

Theoretical Prediction of Capacity

At present, there is a complete lack of elegant monitoring systems (like the PDA analyzer™) for verifying capacity of vibratory installed piles.

Furthermore, there is also a great hesitancy within the engineering community to allow foundation piles to be installed with vibratory driving equipment, even when it’s been verified (dynamic and/or static load tests) that the conditions are indeed favorable. But more importantly, if an in-situ monitoring technique such as the PDA-based technique would emerge, it would indeed be invaluable for further development of a cost effective pile installation technique.

References

continues on page 26
CONCRETE PILING SPLICES

ALL SIZES AND SHAPES OF PILING
FOR MOMENT, TENSION & COMPRESSION
ENGINEERED TO CODE & DOT REQUIREMENTS
FAST - NO WELDING OR GROUTING

Getting them together for over 25 years

Glenn Locke
Ph 415-331-7260
Fax 415-331-7261

National Ventures Inc.
Test Reports, Brochure, and CD-ROM available

www.pilesplices.com

Cost Effective Timber Pile Foundation Solutions

The low cost piling solution for Foundation and Marine piling.
Design capacities to 75 tons.
Technical seminars available.
Design information available.
From a natural, renewable resource.
For more information contact:

TIMBERPILINGCOUNCIL
FOUNDATION & MARINE PILING

800-410-2070 pst
Fax: 206-275-4755
www.timberpilingcouncil.org
dean@timberpilingcouncil.org

HARD DRIVING

A SHAKER

JUST ADD AIR

Parts
Service

206/762-3550 pacoequip.com 800/678-6379

Piledriver • Q2 • 2005

23
PZ 90

Applications: 90° corner (~50° to ~130°)

Weight: 7.3 lbs/ft (10.9 kg/m)

Steel grade: ASTM A572 Grade 50 (S 355 GP)

Proper Interlocking Examples

Each interlock has a typical degree swing of 20° (+/- 5°) so that the probable swivel range is 40° (+/- 10°) when interlocking two PZ sheets via the connector.

Installation Guidelines:

1. Thread the connector into the interlock while the sheet pile is out of the ground.
2. Adjust the connector to the appropriate position.
3. Tack or spot-weld the connector in place (typically a 10° weld attaching the connector to the sheet pile at the top is sufficient.)
4. Drive/extract the sheet (with the connector attached) as you would normally.

V20

Applications: 90° corner (~25° to ~155°)

Weight: 8.9 lbs/ft (13.2 kg/m)

Steel grade: ASTM A572 Grade 50 (S 355 GP)

Installation Guidelines:

1. Thread the connector into the interlock while the sheet pile is out of the ground.
2. Adjust the connector to the appropriate position.
3. Tack or spot-weld the connector in place (typically a 10° weld attaching the connector to the sheet pile at the top is sufficient.)
4. Drive/extract the sheet (with the connector attached) as you would normally.

www.PilePro.com call for quote (866) 666-7453
For PZ and PZC (Ball + Socket)

<table>
<thead>
<tr>
<th>Connector Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZ 90</td>
<td>Corner (~50° to ~130°)</td>
<td>3</td>
</tr>
<tr>
<td>PZ Tee</td>
<td>Tee Corner (~50° to ~130°)</td>
<td>4</td>
</tr>
<tr>
<td>Joker</td>
<td>Tee Corner (~50° to ~130°)</td>
<td>5</td>
</tr>
<tr>
<td>Bullhead</td>
<td>Tee Corner (~50° to ~130°)</td>
<td>6</td>
</tr>
<tr>
<td>CBF</td>
<td>Tee Corner (~50° to ~130°)</td>
<td>7</td>
</tr>
<tr>
<td>Colt</td>
<td>Corner (~25° to ~65°)</td>
<td>8</td>
</tr>
<tr>
<td>Cobra</td>
<td>Corner (~115° to ~155°)</td>
<td>9</td>
</tr>
<tr>
<td>PBS-M/ PBS-F</td>
<td>PZ / PZC + Peiner Beam</td>
<td>10</td>
</tr>
<tr>
<td>BBS-M/ BBS-F</td>
<td>PZ / PZC + Domestic Beam</td>
<td>11</td>
</tr>
<tr>
<td>WOM/ WOF</td>
<td>PZ / PZC + Pipe Pipe Weld-on</td>
<td>12</td>
</tr>
</tbody>
</table>

For All AZ and Hoesch 1706, 1806, 1856 and 1906 (U-Piles/Larssen)

<table>
<thead>
<tr>
<th>Connector Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y 20</td>
<td>Corner (~25° to ~155°)</td>
<td>13</td>
</tr>
<tr>
<td>VTS</td>
<td>Tee Corner (~45° to ~135°) Circular driving</td>
<td>14</td>
</tr>
<tr>
<td>YT</td>
<td>Tee Corner (~45° to ~135°) Omega corner</td>
<td>15</td>
</tr>
<tr>
<td>Omega 12</td>
<td>Omega corner Jagged U-Walls</td>
<td>16</td>
</tr>
<tr>
<td>Y 22</td>
<td>Larsen Interlock + Pipe Pile Weld-on</td>
<td>17</td>
</tr>
<tr>
<td>PL</td>
<td>Larsen Interlock + Peiner Beam</td>
<td>18</td>
</tr>
<tr>
<td>PLZ I/ PLZ II</td>
<td>Peiner Beam + Larssen-Z Piles</td>
<td>19</td>
</tr>
</tbody>
</table>

For Hoesch-Z Piling (with a width of 22.64 inches or 575 mm)

<table>
<thead>
<tr>
<th>Connector Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HZ 90</td>
<td>Corner (~45° to ~135°)</td>
<td>20</td>
</tr>
<tr>
<td>HZT</td>
<td>Tee Corner (~45° to ~135°)</td>
<td>21</td>
</tr>
<tr>
<td>HZ</td>
<td>Variable weld-on</td>
<td>22</td>
</tr>
<tr>
<td>PHZ-Claw (PZL)</td>
<td>Hoesch-Z + Peiner Beam</td>
<td>22</td>
</tr>
<tr>
<td>PHZ-Knob (PZR)</td>
<td>Hoesch-Z + Peiner Beam</td>
<td>23</td>
</tr>
</tbody>
</table>

For Hoesch-Z Piling (with Hoesch Interlock and a width of 30.15 inches or 675 mm)

<table>
<thead>
<tr>
<th>Connector Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HZn 90</td>
<td>Corner (~45° to ~135°)</td>
<td>24</td>
</tr>
<tr>
<td>HZTn</td>
<td>Tee Corner (~45° to ~135°)</td>
<td>25</td>
</tr>
<tr>
<td>HZn Knopf</td>
<td>Weld-on</td>
<td>26</td>
</tr>
<tr>
<td>HZn</td>
<td>Variable weld-on</td>
<td>27</td>
</tr>
</tbody>
</table>

For PS-Flat Sheet

<table>
<thead>
<tr>
<th>Connector Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWC 120</td>
<td>120° Y Pile</td>
<td>28</td>
</tr>
<tr>
<td>SWC 90</td>
<td>90° Tee Pile</td>
<td>29</td>
</tr>
<tr>
<td>SWC 60</td>
<td>60° Y Pile</td>
<td>30</td>
</tr>
<tr>
<td>SWC 30</td>
<td>30° Y Pile</td>
<td>31</td>
</tr>
<tr>
<td>SWC</td>
<td>Weld-on</td>
<td>32</td>
</tr>
</tbody>
</table>

Sealing sheet piling

- **WADIT®** Non-toxic hot cast interlock sealant impervious to weather | 33 |

To request a complete brochure, please contact PilePro: 866.666.7453 866.626.7453(fax) info@pilepro.com
Mandal Pipe Company... RELIABLE, EXPERIENCED, EFFECTIVE

NEW CARQUINEZ BRIDGE

FCI Constructors and Cleveland Bridge began joint venture construction on the New Carquinez Bridge on Interstate 80 spanning the Carquinez Straits north of Oakland California in June of 2000. This bridge was the first suspension bridge erected in the United States in nearly 30 years and the largest construction project ever bid in California at the time.

Mandal Pipe Company supplied over 6000 tons of large diameter heavy wall pipe to form the foundation for the North and South anchorages. These anchorages will support the tremendous loads necessary to carry the weight of the bridge deck and the heavy traffic volume anticipated along Interstate 80.

Utilizing over 350 individual truck deliveries, the 60 foot long 30” diameter pipe was logistically positioned in storage yards near its final destination points.

Mandal Pipe
P.O. Box 927
Snellville, GA 30078

Ph: 1-770-573-3022 • Fax: 1-770-979-3485
www.mandalpipe.com

IMT's state-of-the-art drill rig technology, your drilling jobs gain outstanding versatility and productivity, so you can do more in less time. Combined with the hardest working product support team in the business, you’ve got all the tools to keep your projects on schedule and your profits high.

See how our dedicated network of affiliated Cat® dealers and exceptional parts and service support deliver the results you’re looking for job after job.

Call us today.

www.kellytractor.com • 561-683-2015 Ext.179

http://media.lib.kth.se/dissengrefhit.asp?dissnr=3358

Sheet Piling Parameters

The table below provides parameters for PZC 13 and PZC 22 sheet piles, including their nominal width, weight, moment of inertia, and section modulus.

<table>
<thead>
<tr>
<th>Nominal Width, in.</th>
<th>Weight in Pounds</th>
<th>Moment of Inertia, in.⁴</th>
<th>Section Modulus, in.³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per lin. ft of bar</td>
<td>Per sq ft of wall</td>
<td>Single Section</td>
</tr>
<tr>
<td>PZC 13</td>
<td>27.88</td>
<td>50.4</td>
<td>21.7</td>
</tr>
<tr>
<td>PZC 22</td>
<td>22.0</td>
<td>40.3</td>
<td>22.0</td>
</tr>
</tbody>
</table>

The table below provides parameters for PZC 18 and PZC 27 sheet piles, including their nominal width, weight, moment of inertia, and section modulus.

<table>
<thead>
<tr>
<th>Nominal Width, in.</th>
<th>Weight in Pounds</th>
<th>Moment of Inertia, in.⁴</th>
<th>Section Modulus, in.³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per lin. ft of bar</td>
<td>Per sq ft of wall</td>
<td>Single Section</td>
</tr>
<tr>
<td>PZC 18</td>
<td>25</td>
<td>50.4</td>
<td>24.2</td>
</tr>
<tr>
<td>PZC 27</td>
<td>18</td>
<td>40.5</td>
<td>27.5</td>
</tr>
</tbody>
</table>

Learn more: www.sheet-piling.com

Chaparral Steel
Charleston, South Carolina is a town that celebrates its rich heritage and history. This made the renovation of the old Charleston High School (built in the 1920s) a challenging one. Located adjacent to the main campus of the Medical University of South Carolina (MUSC), the building seemed a natural location for the expansion of the University. However, there was a challenge to preserve the existing brick façade and incorporate it into the new development of a parking garage and additional office building.

The project was selected as the PDCA 2004 Project of the Year (Under $1,000,000) for the particular challenge faced by the renovation team. PDCA members WPC Inc. and Palmetto Pile Driving, Inc. were part of this team, and faced these challenges head-on.

Unique Pile Driving Used in the Project

Driven piles for this project were necessary for the renovation and new construction, as well as the existing brick façade support frame of the Charleston High School building. The project was challenging because it involved pile installation within 3 feet of a braced, un-reinforced brick masonry frame, which is a distinct application for driven piles. “Although the brick façade was braced, the masonry was un-reinforced and old (80 + years old), which made it susceptible to vibrations. In addition, the working area was limited in and around the existing brick façade, posing additional challenges,” says Ed Hajduk, PE, Geotechnical Engineer for WPC Inc. It is also important to mention that the pile driving was located in the heart of Charleston, SC near a working hospital, which necessitated extensive monitoring. Because of the 20+ years of neglect the building suffered, it did not meet the current seismic standards of the SC building code (i.e. IBC 2000). Therefore, the existing structure minus the façade had to be demolished and replaced. Limited construction space, concerns of soil subsidence caused during drilled shaft construction, and quick testing capability of driven piles via dynamic testing led to the selection of driven piles.

Although not new, the combined pile design and installation monitoring program showcased how teamwork from the geotechnical engineer (WPC), owner (MUSC), general contractor (Mashburn Construction), and pile driving subcontractor (Palmetto Pile
Driving) can utilize driven pile foundations as the economical solution for the unique situation of installing a foundation system around a space restricted, vibration sensitive site. J. Harry Robbins, Jr. is president of Palmetto Pile Driving, Inc., and he especially understood the need to get the job done right: “Early on the design team was considering the use of alternatives to driven piles, due to vibration concerns. We knew that driven piles would work, and I wanted very much to be able to prove it. If driven piles on the highly visible project caused vibration problems, it would potentially have had a long-reaching, negative impact on driven piles in Charleston,” he says.

The use of driven steel H piles provided a cost-efficient foundation solution in this setting. Since steel H piles are low displacement, they (combined with pre-augering) produced a minimal amount of vibrations that did not affect the sensitive un-reinforced brick façade. In addition, the ability to easily splice steel H piles allowed long (100+) foot pile to be installed in a restrictive space. The ability to splice piles also allowed for a smaller pile storage area on site, which also assisted the project by allowing other activities to be conducted concurrently with the pile driving. Additionally, the use of driven piles had a beneficial impact on the schedule when compared to other foundation options because of these concurrent activities.

Equipment Used

An International Construction Equipment (I.C.E.) Model 75 hammer was used to install the production and test piles. A 12-inch diameter auger was used to pre-auger the pile locations to a maximum depth of 40 feet below the ground surface.

The piles were primarily steel HP12 x 53, with lengths ranging from 90 to 105 ft. Also, 12 in OD x 0.219 (wall thickness) steel open-ended pipe (OEP) by 45 feet long were used to support the un-reinforced brick façade.

“Hammer, auger and leads were manufactured by I.C.E. Our crane was a Link-Belt 138H-II crawler crane. Piles were manufactured by Nucor Steel and supplied by Skyline Steel. Forsberg Engineering did the surveying layout of the piles. WPC engineering did the quality control,” Robbins says.

Working Conditions

The site conditions for the project were restrictive, given that the site was surrounded by existing buildings. “One of these buildings was a working MUSC hospital that maintained regular patient visits and surgeries during the pile driving operations. In addition, an existing interior structure from the old Charleston High School was kept, making access on the interior of the existing brick façade limited as well.

Although not new, the combined pile design and installation monitoring program showcased how teamwork from the geotechnical engineer (WPC), owner (MUSC), general contractor (Mashburn Construction), and pile driving subcontractor (Palmetto Pile Driving) can utilize driven pile foundations as the economical solution for installing a foundation system around a space restricted, vibration sensitive site.
Other Project Concerns

Safety

The primary safety issue regarding the pile driving on this project (in addition to standard pile driving safety issues) was the effects of vibrations on the existing brick façade and the concern for subsequent collapse. By monitoring pile vibrations and existing cracks, the team was able to determine the vibrations generated by pile driving did not affect the brick façade.

Environmental

Due to the location of the site near existing historical residential homes and existing MUSC facilities, vibrations were a concern at these locations as well. This concern was addressed by performing a pre-condition survey of the surrounding area and conducting vibration and existing crack monitoring on selected adjacent structures during pile driving.

Noise

Given that the project was in a dense urban environment with residents and workers directly adjacent to the site, noise was a concern. However, the method of pile installation selected to limit vibrations (i.e. pre-augering through the
PDCA PROJECT SPOTLIGHT

Work began on the project to renovate and build a parking garage and office building on the old Charleston High School Building in the Spring of 2004.

- Owner: Medical University of South Carolina (MUSC)
- Architect: JHS Architecture
- Structural Engineer: Mabry Engineering
- Geotechnical Engineer: WPC Inc.
- General Contractor: Mashburn Construction Company, Inc.
- Sub-Contractors/Supplier: Palmetto Pile Driving, Inc. and WPC, Inc.

“...We knew that driven piles would work, and I wanted very much to be able to prove it…” J. Harry Robbins, Jr., President, Palmetto Pile Driving, Inc.

upper soils and use of a low hammer stroke) reduced noise generated during pile driving.

About WPC

“WPC’s geotechnical capabilities, knowledge, and experience allowed us to recommend driven piles as the ideal foundation solution for the project in terms of cost and installation. Our construction services capabilities, knowledge, and experience allowed us to refine our pile design, thereby reducing pile lengths and project cost. In addition, by conducting extensive monitoring in the form of pre-condition surveys and pile/vibration/crack monitoring, we were able to verify that the driven piles did not cause damage to the existing old Charleston High School structures that were to be incorporated into the new development or the adjacent structures,” Hajduk says.

Quality Control

Quality control for the pile installation consisted of: A pre-condition survey of the existing brick façade and surrounding buildings; a test pile program consisting of dynamic monitoring during pile installation and hammer restrikes, as well as vibration monitoring; pile inspection during installation consisting of monitoring pile blow counts and other information such as hammer stroke; vibration and existing crack monitoring during pile installation; and finally, a review of all available pile data at the end of the project by a registered engineer.

Hajduk attributes teamwork and recognition of the unique attributes of the project as factors to its success.

“Teamwork is a successful factor to almost every successful project,” Hajduk adds.
For 80 Years, Your Direct Call To Naylor’s Chicago Plant Has Given You Personalized Service Including:

- 100% domestic steel
- Exact lengths
- Attached or loose end plates
- In-plant inspection
- Conical points, chill & splice rings as required
- Mill Certification with the shipment
- Prompt availability and on time delivery of test and production pile

NAYLOR PIPE COMPANY
1245 East 92nd Street • Chicago, Illinois 60619

Phone: 773.721.9400 • Fax: 773.721.9494
E-mail: sales@naylorpipe.com

Visit our Website: www.naylorpipe.com
OPEN-END DIESEL HAMMERS

The Open-End Diesel hammer is a single cylinder, two-cycle internal combustion hammer that operates on diesel fuel. The piston serves as the pile driving ram. The combustion energy in the diesel fuel generates the stroke of the ram and, for all except the easiest driving conditions; the impact of the ram drives the pile. Diesel hammers have compression ratios in the same range as typical diesel engines so the temperatures in the pre-compressed gasses are high enough to induce combustion.

The principal components of the diesel hammer are shown in Figure 4. A cycle of the operation can be described beginning with the ram at the top of the stroke in Figure 4a. It falls freely under the action of gravity to the exhaust ports as shown in Figure 4b. To this point, the ram velocity could be calculated from the simple laws for freely falling bodies. Of course, there will be some reduction in velocity due to friction between the ram and the cylinder. When the ram passes the exhaust ports it blocks further gases from escaping and begins compressing the gas in the combustion chamber (Figure 4c). During this stage, the ram starts to decelerate and finally will lose velocity due to the action of the pre-compression pressures under the ram. As it descends, the falling ram activates the fuel pump and causes a metered amount of fuel to be introduced into the combustion chamber. The method of activation of the fuel pump varies with the brand of the hammer. A cam mechanism is commonly used. Other systems use an air piston which senses the pressure in the combustion chamber. Some hammers are of the impact atomization type where fuel enters in liquid form to be atomized when the nose of the piston strikes the anvil while others are of the pressure injection type where fuel is injected by diesel injectors in atomized form.

At or near the time of impact, the fuel and the heated compressed air mixture in the combustion chamber begins to burn; the gas pressure in the combustion chamber increases dramatically when the fuel burns. It is the impact that does most of the pile driving, but in very easy driving the pile is also pushed down into the ground by the force of the compressed gas in the combustion chamber acting down on the anvil.

After impact, the ram begins to move back up in the chamber. The upward motion is generated by both the rebound of the pile and the gas pressure. In very easy driving conditions, some pile penetration is generated by the gas pressure directly, reducing the gas pressure available for raising the ram. Thus, the stroke of the Open-End Diesel hammer is dependent on driving resistance, fuel charge, pile movement, and pile stiffness.

Under the action of the gas pressure, the ram is accelerated upward until it reaches the port where the excess gas pressure is exhausted to the atmosphere (Figure 4e). Since the ram has a velocity at that point, it “coasts” on up to the top of the stroke decelerating under the action of gravity. During this part of the stroke, fresh air is drawn into the combustion chamber scavenging the burned gases (Figure 4f). When the ram reaches the top of the stroke, the cycle is repeated.

To start the Open-End Diesel, the ram is lifted mechanically (see Figure 4a) for its initial fall. Released by a mechanical trip, the piston falls through the cycle described above.

In very easy driving, the stroke of the ram may be so small that scavenging is inadequate and the hammer will not run. In such cases, the ram must be lifted repeatedly by the crane until the pile is driven to the point where it has sufficient resistance to provide enough stroke to make the hammer run.

The diesel fuel for the operation of the open-end diesel hammer is carried in a tank on the hammer and led to the combustion chamber by a pump system, also mounted on the hammer. Some hammers have a throttle with fixed steps that make possible the injection of various metered amounts of fuel into the combustion chamber. Others have continuously variable throttles. Some are adjustable by an operator on the ground while others can only be changed at the hammer. Varying the throttle setting varies the fuel input, which varies the stroke and energy, allowing for greater controllability.

Open-End Diesel hammers are either air or water-cooled. The water-cooled machines have a water reservoir in the hammer while the air-cooled type has cooling fins on the outside of the combustion chamber.

Open-End Diesel hammers require adequate lubrication for efficient operation. Most modern hammers have an automatic oil pump for piston lubrication and grease fittings for high temperature grease to lubricate the anvil. The purpose of the lubricant is to keep the piston rings working freely and
to reduce wear on the anvil, ram, and hammer cylinder. The pile driving crew should periodically stop operations to add lubricating oil and/or to grease the hammer.

Diesel hammers usually employ a hammer cushion between the anvil of the hammer and the drive cap. The function of the cushion is to soften the impact and protect both the hammer and the driving system. Some manufacturers eliminate the hammer cushion through use of rebound absorption systems to protect the hammer without utilizing a cushion between the hammer and the drive cap.

There is no standardized method for rating diesel hammers as is the case for air/steam hammers. Some manufacturers use a thermodynamic analysis to arrive at a rating while others simply multiply the maximum stroke by the ram weight. Other methods are also used. Since the ram stroke varies with the driving resistance, the fuel charge, friction, and the axial stiffness of the pile, stroke cannot be easily predicted or completely controlled. A set of driving conditions will produce a particular stroke. While the stroke can be reduced by throttling the hammer back, it cannot be increased beyond that achieved with a full throttle.

Open-End Diesel Hammer Operational Conformance Checklist

1. Obtain the manufacturer’s current specifications for the type and model of hammer being used.

2. Check that the cushion material being used between the anvil and the drive cap is in good condition and in conformance with the hammer manufacturer's recommendations.

3. Stroke can be determined by timing the speed of operation of the hammer. The stroke can be calculated from the formula

\[
H = \frac{450g}{b^2} - 0.3 \quad (1a)
\]

where \(H\) is the stroke in feet, \(b\) is the speed of hammer operation in blows per minute, and \(g\) is the acceleration of gravity, 32.2 feet per second per second.

This formula may be simplified to the form

\[
H = \frac{14500}{b^2} - 0.3 \quad (1b)
\]

for English units, or

\[
H = \frac{4400}{b^2} - 0.9 \quad (1c)
\]

for SI units.
For convenience, the stroke is given in Table I for various hammer speeds from the above formulas.

There is an electronic device that is sometimes available on site to determine the stroke directly from the time between blows detected by sound of the operating hammer. Increased ring friction as with a new or rebuilt hammer and operation on a batter require correction of the above formulas. Correction can be by direct observation of ram stroke and is encouraged.

4. Obtain the driving criteria from the engineer. If a Wave Equation analysis has been used the driving criteria will include stroke in addition to blow count. Observe the driving of a test pile and note the ram stroke or speed of operation when the required blow count is reached. Determine if these conditions satisfy the job requirement.

5. Check the manufacturer’s recommendations. Observe the hammer operation for a short time to see that the specified piston stroke is consistently reached as a minimum and that the stroke is relatively constant (within six inches from the specified minimum). The stroke can be verified by measuring the operating speed of the hammer in blows per minute and computing the approximate stroke from the formula in Item 3 or obtain it from Table I.

6. When observing the hammer on production piles, expect that the stroke of the ram will usually be less than was observed at final driving on the test pile. When the pile is penetrating easily, a shortened stroke will be most apparent and occurs because some of the gas pressure energy of the hammer is performing work directly on the pile. Less energy is left to propel the ram upward, and the upward stroke of the ram decreases. In this circumstance, there is nothing that the contractor’s personnel can do to produce full stroke of the ram. As the pile “takes up” (increased blow count) the stroke of the ram will increase until the pile reaches the required stop criteria. At this time the required stroke should again be observed.

7. During the course of observing the hammer stroke throughout the work day, be alert for any unusual change in the ram stroke. In periods of sustained driv-
ing at high blow counts, (20 blows per inch or 25 millimeters and above), and/or in conditions of high pile rebound, diesel hammers can overheat, producing premature combustion of the fuel. This condition is commonly called preignition. Hammers operating in conditions requiring many blows per pile may develop these problems after several hours of operation. (Note that most manufacturers void their equipment warranties for hammers worked consistently in excess of 10 blows per inch or 25 millimeters). Preignition could also be caused by improper fuel (highly volatile fuel with a low flash point). Preignition decreases the impact velocity and in extreme cases, prevents impact. The observable result will be an increase in the stroke of the hammer as compared to that observed on other piles earlier in the day. Pile penetration at the specified blow count will also decrease. A hint of this impending problem can be a darkening of the hammer exhaust gases, with even flame sometimes flashing at the exhaust ports. The sound of the blow will sometimes become duller, losing the sharp crack common with a properly running hammer. The hammer should be stopped and allowed to cool before proceeding with further driving operations. A restrike test with a cold hammer can be used to detect preignition. It will be indicated if the blow count is less than with a hot hammer.

Hammer Trouble Shooting

1. Sluggish hammer operation and shorter strokes can result from inadequate piston lubrication, low grade fuel, and worn parts (check manufacturer’s recommendations). Note: Worn compression rings can be diagnosed at hammer test by aborting the fuel flow and tripping the piston to fall onto a dry anvil block. Proper compression will be noted by the piston’s rapidly decaying bounce on the entrapped compressed air (see manufacturer’s recommendations for minimum decay time).

2. Erratic hammer operation and variable stoking can result from foreign material or water in the fuel lines, fuel filter or pump (check manufacturer’s recommendations), plugged or closed fuel tank breather, and in the case of fuel injection hammers, fouled fuel injectors.

3. A decrease in the average and maximum strokes over the day for a water-cooled diesel hammer may be the result of the boiling off of the water in the water jacket (check for cooling water in water jacket).

4. Increase in blow count for a typical driving record during the day could be an indication of preignition.

The above information has been reprinted by permission from the Pile Inspector’s Guide to Hammers, Copyright 1995, published first by the Deep Foundation Institute (DFI). Equipment availability may vary due to market conditions. ▼
Nucor-Yamato Steel’s
HP8, HP10, HP12 & HP14,
PS and PZ Sheet Piling

PILING PRODUCT FEATURES

CAST AND HOT ROLLED
IN THE U.S.A.
NATIONWIDE PILING
DEALER NETWORK

SHEET PILES HAVE PREFERRED
BALL & SOCKET INTERLOCK

H-PILING AVAILABLE IN
ASTM A572 GRADES 50 & 60
AND ASTM 690

SHEET-PILING AVAILABLE IN ASTM A328,
ASTM A572 GRADES 50 & 60, AND ASTM 690

H-PILE SECTION SIZES

<table>
<thead>
<tr>
<th>HP Designation</th>
<th>Area Width (in)</th>
<th>Height (in)</th>
<th>Weight (Mass) Per Single ft/ft</th>
<th>Moment of Inertia Per Single in^4</th>
<th>Section Modulus Per Single in^3</th>
<th>Surface Area Total ft^2</th>
<th>Nominal Area ft^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP8</td>
<td>11.9</td>
<td>76.6</td>
<td>22.0</td>
<td>147</td>
<td>151</td>
<td>601</td>
<td>325</td>
</tr>
<tr>
<td>HP10</td>
<td>12.1</td>
<td>78.2</td>
<td>18.0</td>
<td>134</td>
<td>173</td>
<td>457</td>
<td>304</td>
</tr>
<tr>
<td>HP12</td>
<td>13.4</td>
<td>86.6</td>
<td>25.0</td>
<td>209</td>
<td>275</td>
<td>50</td>
<td>374</td>
</tr>
<tr>
<td>HP14</td>
<td>15.2</td>
<td>98.2</td>
<td>30.0</td>
<td>229</td>
<td>315</td>
<td>55.0</td>
<td>387</td>
</tr>
</tbody>
</table>

SHEET PILING TECHNICAL DATA

Section Designation
AREA
WIDTH
HEIGHT
WEIGHT (MASS)
PER SINGLE
PER WALL
MOMENT OF INERTIA
PER SINGLE
PER WALL
SECTION MODULUS
PER SINGLE
PER WALL
SURFACE AREA
Total Area Nominal Area*

NUCOR-YAMATO STEEL PILING DEALERS

Fargo
Structural
Fargo, ND
(701) 282-2345

Mid-America
Foundation
Supply, Inc.
Fort Wayne, IN
(800) 348-1890

National Pipe
and Piling, Inc.
Tacoma, WA
(253) 274-9800

D.P. Nicoli, Inc.
Tuatla, OR
(503) 692-6080

Husker Steel
Columbus, NE
(402) 564-3271

J. D. Fields and
Company, Inc.
South Holland, IL
(708) 333-5611

Skyline Steel
Corporation
Birmingham, AL
(205) 262-9909

Citrus Heights, CA
(916) 895-6000

Norcross, GA
(770) 242-9007

Tinley Park, IL
(708) 444-9999

Mandeville, LA
(985) 624-3620

East Sandwich, MA
(508) 833-4600

Earth City, MO
(314) 739-1303

Middletown, NJ
(732) 671-5900

West Chester, OH
(513) 777-7039

Pittsburgh, PA
(412) 561-3895

Pearland, TX
(281) 992-4000

Fairfax Station, VA
(703) 978-2500

Gig Harbor, WA
(253) 858-9405

Skyline Canada
St-Bruno, Quebec
(450) 461-6366

*Note: Nominal coating area excludes socket interior and ball of interlock.

NUCOR - YAMATO STEEL COMPANY
POST OFFICE BOX 1228 • BLYTHEVILLE, ARKANSAS 72316
800/289-6977 • 870/762-5500 • FAX 870/763-9107
WWW.NUCORYAMATO.COM
Some old case law can help answer this tempest. All pile driving contractors face at least once in a lifetime, an owner’s specifications that will not work due to defective design, or erroneous soils information relied on and used to bid from by contractor and owner’s engineer. This can result in contentiousness, claims, threats of termination, and the like. How is it best for pile driving contractors to deal with such design impossibility risks, early and effectively? Here are some case studies, and some practical tips.

The Key Case Studies that Frame this Area of Construction Law

While there are not that many “impossibility” cases in published court decisions, a fair number of those cases involve underground construction and differing soil conditions. This is perhaps why pile drivers “bet the company” when they bid. Here are seven cases that all pile drivers should consider having in their back pocket when going “toe to toe” with an owner or A/E over whether performance conditions are not as promised.

The Spearin Case and Spearin Doctrine

The famous construction law case that coined the Spearin Doctrine1, involved specifications that failed to take into account underground sewer works that overflowed, preventing completion of a dry dock contracted by the Navy. That case is famous for first articulating directly the bidding concept of the owner’s “implied warranty of accuracy and completeness of plans and specifications.” That implied warranty is the touchstone for most differing site condition and defective specification claims. As stated in Spearin,

…”if the contractor is bound to build according to plans and specifications prepared by the owner, the contractor will not be responsible for the consequences of defects in the plans and specifications.”

The Spearin doctrine is generally considered a “claim” or extra compensation case, but in fact, it was the first clearly articulated “design impossibility” case. In Spearin, after 15 months of unsuccessful effort, the contractor walked off the project and the Navy sued for the cost of completing performance by other means. Spearin was the defendant, and convinced the U.S. Supreme Court that Spearin was
excused from further performance by the undisclosed defects in the plans, making them unbuildable.

Christie v. U.S.

The Supreme Court relied on an earlier sheet piling case, *Christie v. U.S.*, where the dam contractor on the Warrior River in Alabama was awarded extra costs for more difficult pile driving, when the soil conditions changed from those indicated in the borings (the Resident engineer was told of sunken logs encountered during the drilling of the borings, and said they did not need to be referenced in the logs, and later were struck during piling). The Christie case introduced the concept that a “positive representation” in soil borings could be the basis of an additional compensation claim, where actual conditions encountered were materially different and caused increased costs.

“It makes no difference to the legal aspects of the case that the omissions from the records of the results of the borings did not have sinister purpose. There were representations made which were relied upon by claimants, and properly relied upon by them, as they were positive.”

It makes sense to tie the “old law” into today’s new projects and driven piling near infrastructures. That old law, simply stated, puts the onus on the owner to submit accurate data and buildable plans. Many states, such as California, actually adopt this law by statute as a public policy, so design risks are owner risks (except in design build projects). See Public Contract Code section 1104:

“No local public entity, charter city, or charter county shall require a bidder to assume responsibility for the completeness and accuracy of architectural or engineering plans and specifications on public works projects, except on clearly designated design build projects. Nothing in this section shall be construed to prohibit a local public entity, charter city, or charter county from requiring a bidder to review architectural or engineering plans and specifications prior to submission of a bid, and report any errors and omissions noted by the contractor to the architect or owner. The review by the contractor shall be confined to the contractor’s capacity as a contractor, and not as a licensed design professional.”

Paul N. Howard Co.

A more recent sheet piling case, *Paul N. Howard Co. v. Puerto Rico Aqueduct Sewer Authority* held the contractor was excused when the sheet piling failed due to a differing site condition causing soil instability. This case used the insistence of the owner on exact performance as a basis for finding legal impossibility:

“The district court found that the instability of the highway embankment constituted a differing site condition justifying rescission of that part of the contract that required Howard to lay the pipeline along the highway embankment and rejected PRASA’s contention that it was the design of Howard’s sheet pile system that was responsible for Howard’s difficulties. In coming to this conclusion the district court relied on expert testimony that the tendency of the highway embankment to slide was unusual and unpredictable, and that only by changing the course of the pipeline or leaving the sheet piling in place could lateral displacement of the pipeline be prevented...Under these circumstances we have no hesitation in affirming the district court’s conclusion...Finally, we reject PRASA’s contention that the district court improperly based its finding of impossibility on an “insignificant defect” – the 7” lateral deviation in the pipeline. Inasmuch as PRASA refused to accept the pipeline with that deviation, and inasmuch PRASA ordered Howard not to proceed unless it could prevent the embankment from sliding, we think the district court was justified in concluding that it was IMPOSSIBLE to lay the pipeline within the tolerances deemed acceptable to PRASA. Id, at 884.”

Blount Brothers v. U.S.

In *Blount Brothers Corp. v. U.S.* (Fed. Cir. 1989) 872 F2d 1003, at 1007 the Contractor was relieved of its obligation to meet the specifications for brown and tan aggregates by proving that no such aggregate gravel could be found after a reasonable search.

“Specifications having major safety defects are fully as much in breach of the implied warranty as defects in the feasibility, practicability, or commercial possibility of performance as specified...
Junttatan piles better

- High productivity
- Quick start-up
- Easy transportation
- Reliable in use
- Less noise and smoke

Junttan Oy P.O Box 1702, 70701 Kuopio, Finland
Tel: 404 514 8056 (USA sales)
Tel: +358 17 287 44 00 Fax: +358 17 287 4411
junttan@junttan.com / www.junttan.com
We hold, therefore, that Blount Bros. has carried its burden of establishing legal impossibility by proving that the contract specifications as written were defective.”

Hol-gar Mfg.

Impossibility can also be proven when the government yields or relaxes its specifications in response to legitimate claims of extremely difficulty in achieving compliance with specifications. See also Hol-Gar Mfg. Corp. v. U.S. (1966) 360 F2d 634, at 638, 175 Cl.Ct. at p. 524:

“That changes in the specifications were required is clear from the fact that after numerous negotiation sessions, during which time the plaintiff was attempting unsuccessfully to comply with the specifications, they were changed by the execution of Supplemental Agreement No. 8.”

Foster Wheeler

Foster Wheeler Corp. v. U.S. (Cl. Ct. 1975) 513 F2d 588, at 594, citing the definition of Impossibility in Restatement of the Law, Contracts, section 454:

“Impossibility means not only impossibility but impracticability because of extreme and unreasonable difficulty, expense, injury, or loss.”

In Foster, the specifications required “shock hard” boilers. In accepting the contractor’s claim of design impossibility, the court found it compelling that the government accepted the contractor’s design build design despite its non-compliance with the “shock hard” specification:

“The Government ultimately accepted plaintiff’s boiler design; although it knew the boiler was not shock-hard... There can be no dispute that the Government retreated from its requirement that the AGC-19 boilers be shock-hard. In its letter of January 11, 1967, FWC described several areas which were overstressed and proposed modifications of design which, in some cases, admittedly violated accessibility and maintenance specifications, but which were considered necessary to satisfy shock specifications.”

Most state court’s jurisprudence in this area cites Spearin and Foster as the foundation of their “differing site condition” law. Also, the Federal Acquisition Regulations contain a specific “checklist” to determine if a Differing Site Condition is encountered. That checklist should be used as the outline for a claim or constructability analysis for your engineering team and experts.

OK – What to do on the job when the Specifications do not work or appear unsafe?

Some owners will partner quickly and treat a design impossibility issue as a constructability problem to be solved jointly. Others may be included to quote contract and subcontract boilerplate that they believe shifts the risk of the situation elsewhere, and leave the contractor little choice but to confront the situation with a potential claim posture. How to win over the owner, so the owner does not “shoot the messenger:"

Some Suggestions:

1. Bring in a soils engineer of your own to perform additional borings on site during production.

2. Consider using a “WEAP” analysis to test your means and methods (hammer size, pile size, length, soil etc.) against represented versus actual conditions.

3. Test and verify the soil strengths and structural calculations in the soils report — it has happened that math was wrong, or the

H&M VIBRO, INC.

P.O. Box 224, Grandville, MI 49468
Toll Free: (800) 648-3403
(616) 538-4150
www.hmvibro.com

Model H-1700
Vibratory Driver/Extractor

Features:

- 75 Ton Pile Clamping Force
- 30 Ton Extraction Line Pull
- Weight: 7,000 Pounds
- Optional Counterweight: 3,600 Pounds
- CAT 3126 Power Pack

SALES AND RENTALS
report writer misinterpreted a formula, leading to a factor of safety contrary to owner intent.

4. Secure the actual field drilling logs. Were there any slant drillings that were extrapolated? Any abandoned borings not disclosed? Interesting stuff found in this grab bag.

5. Use software modeling to show that your bid was reasonable and the inputs – soils – changed.

6. Take the initiative with the owner – ask for a meeting to exchange engineering views. Submit an expert’s report early.

7. When the project has safety or damage risks, consider a shut down carefully. Seek owner indication in the pre-job conference that the owner will respect legitimate safety driven suspensions when related to the project design and will not claim delay. Ask, even if they say no.

8. Train field superintendents and foreman to keep good daily production records per pile, annotated factually, that can serve to measure true impact and save later claim costs.

Conclusion

Pile Driving is a challenging and innovative field, and has been for more than 100 years. It has been the “darling” of the U.S. Supreme Court, who rightly recognized by 1915, that design risks belonged to the owner, and construction efficiency and cost would be better absorbed by paying for extra work, and recognizing impossibility when it exists. For the pile driver, this lesson remains a challenge on each new project. The concepts of these cases should help support the pile driver’s cause, for a fair shake, when it follows the plans and the plans do not work.

Mark J. Rice is a California attorney who represents pile driving contractors, and is a member of the California ACG Legal Advisory Committee. Mr. Rice litigates differing site condition claims, defective specification claims, and property damage claims.

References

3 744 F. 880 (1984 1st Cir.)
Noise and Vibration Concerns? DIFFICULT Jobsite ACCESS?

It May be Time to Consider the Hydraulic “Press in” Method of Sheet Pile Installation

We have PZ-22, PZ-27, PZ-35, and PZ-40 and Equivalents!!

NEW AND USED, FOR SALE OR FOR RENT

Lightweight Piling, Waterloo Sheet Piling, H-bearing Pile, Structural Sections, Piling Accessories, and Coating

CALL NOW!

International Construction Services, Inc.
Corporate Headquarters, P.O. Box 15598
Pittsburgh, PA 15244-0598
Ph: (888) 593-1600 or (412) 788-6430
Fax: (412) 788-9180 • E-mail: icsi@nb.net

NY / NJ
(570) 504-5880

Chicago, IL
(816) 609-9527

Sacramento, CA
(916) 989-6720

Authorized Distributor for
CMRM
Steel Dynamics, Inc.

Working with contractors for contractors
Giken America Corporation • 5802 Hoffner Avenue # 707 • Orlando, Florida • (407) 380 3232 • www.gikenamerica.com
We would like to welcome the following new members. Please visit the PDCA website at www.piledrivers.org and click on Member Search for complete contact information on all members.

NEW CONTRACTOR MEMBERS

Ahrens Piledriving
Cheyenne, Wyoming
Contact: Mark Ahrens
Services provided: bulkheads, deep excavation, marine, pile driving

Clark Foundations, Inc.
Bethesda, Maryland
Contact: Mahmoud Hosseini
Services provided: pile driving

Foundation Materials
New Orleans, Louisiana
Contact: Paul Tassin
Services provided: pile driving, general contractor

Franks Casing Crew and Rental
Lafayette, Louisiana
Contact: Donnie Crain
Services provided: marine, pile driving, off-shore, pipe sales, equipment sales & rental

Herlihy Mid-Continent Co.
Romeoville, Illinois
Contact: Arthur Haggerty
Services provided: bridge building, docks & wharves, earth retention, general, highway & heavy civil, marine, pile driving

Kuhn Construction
Hokessin, Delaware
Contact: M. Lawrence Kuhn
Services provided: docks & wharves, marine, pile driving

MCDowell NW Piling, Inc.
Kent, Washington
Contact: Michael McDowell
Services provided: pile driving contractor, earth retention, general contracting

R.L. Morrison and Sons
McClellanville, South Carolina
Contact: Michael Morrison
Services provided: pile driving

Saddlebrook Construction
Pickens, South Carolina
Contact: Don White
Services provided: pile driving contractor, bridge building, earth retention, general contracting, highway & heavy civil

Sea & Shore Contracting
Boston, Massachusetts
Contact: Michael Lally
Services provided: bulkheads, deep dynamic compaction, deep excavation, docks & wharves, earth retention, general contracting, marine, pile driving

Signor Enterprises
Austin, Texas
Contact: Rusty Signor
Services provided: pile driving

Sun Marine Maintenance
Frankford, Delaware
Contact: Michael R. Jahnigen
Services provided: pile driving contractor, bulkheads, docks & wharves, marine

Waterfront Marine Construction
Virginia Beach, Virginia
Contact: Ken Sutton
Services provided: bridge building, bulkheads, general contracting, highway & heavy civil, marine, pile driving

Weeks Marine, Inc.
Cranford, New Jersey
Contact: Gary A. Platt
Services provided: pile driving

WH Engineering
Grand Junction, Colorado
Contact: Sandy Heley
Services provided: bridge building, earth retention, highway & heavy civil, pile driving

NEW ASSOCIATE MEMBERS

AB Chance / Hubbell Power Systems
Centralla, Missouri
Contact: Rich Zinser
Services provided: composite piles, helical steel piers, steel pipe piles, drill equipment, drive caps & inserts, leads & spotters, marine equipment

*NEW TECHNICAL MEMBERS**

Buster Blalock
Wahoo Enterprises
Folly Beach, South Carolina
Services provided: trucking

Collins Company
Camans ISC, Washington
Services provided: pile driving equipment

Shawn “Tiny” J. Etier
GS2 Engineering & Environmental Consultants, Inc.
Charleston, South Carolina
Services provided: geotechnical engineering, pile driving monitoring, vibration monitoring.

NEW TEHNOICAL MEMBERS

Instantel
Ottawa, Ontario
Contact: Rob Lee
Services provided: instrumentation for vibration monitoring

Kobelco Cranes
Houston, Texas
Contact: Jack Fendrick
Services provided: cranes

PilePro
New York, New York
Contact: Rob Wendt
Services provided: sheet piling accessories

Standard Concrete Products
Charleston, South Carolina
Contact: TBA
Services provided: concrete piles

TA Services, Inc.
Mansfield, Texas
Contact: Lilli Schaefer
Services provided: trucking
PDCA New Member List

Robert Hollingsworth
Charleston, South Carolina
Services provided: dynamic pile testing, geotechnical engineering

Steve Kiser
MACTEC Engineering & Consulting, Inc.
Charlotte, North Carolina
Services provided: analysis, civil & design, geotechnical, materials testing, pile driving monitoring, vibration monitoring

Ronald Lejman
GMU Geotechnical
Rancho Santa Margarita, California
Services provided: consulting, geotechnical, materials testing, vibration monitoring

Jim McNance
Carpenters Training Union
Pleasanton, California
Services provided: pile driving training

Randy Wirt
MACTEC Engineering & Consulting, Inc.
Richmond, Virginia
Services provided: geotechnical

PDCA Calendar of Events

September 15-16, 2005
Design of Cost-Efficient Driven Piles Conference
Sheraton Framingham Hotel
Boston, Massachusetts

March 2-4, 2006
10th Anniversary Winter Roundtable Conference
Hilton Palacio Del Rio Hotel
San Antonio, Texas

Other Industry Events

September 22-24, 2005
DFI 30th Annual Conference on Deep Foundations and Members Meeting
Fairmont Hotel
Chicago, Illinois

Ford Piling
Foundations, Inc.
Pile Driving - Pile Load Testing
Steel Sheetings - Helical Pier
Underpinning

Office and Yard: 4985 Euclid Road, Virginia Beach, Virginia 23462
Mailing Address: P.O. Box 62364, Virginia Beach, Virginia 23466
Telephone: (757) 497-3593
Fax: (757) 497-0031
E-mail: piledriver@msn.com

Installing Driven Piles in Tidewater and Throughout the Southeast for 57 Years

Marine Contracting Corporation
Marine Construction and Demolition
Pile Driving and Dredging

Office: 1397 A Air Rail Ave, Virginia Beach, Virginia 23455
Mailing Address: P.O. Box 5525, Virginia Beach, Virginia 23471
Telephone: (757) 460-4666
Fax: (757) 363-9647
E-mail: mccorp@infi.net

Providing a Full Range of Marine Construction Services for 24 Years
Liebherr LRB 155
Max. Operating weight: 74 US ton
Leader Length: 60 ft./70 ft./80 ft.
Max. Torque: 165,000 ft.lbs.
Max. Push/Pull (crowd force): 66,000 lbs.
Engine: Liebherr V8 Diesel engine, D 9408 Ti-E, 544 HP at 1900 rpm. No additional power packs are required as attachments, can be powered with the machine’s engine.

Liebherr LRB 125
Max. Operating weight: 43 US ton
Leader Length: 42 ft.
Max. Torque: 87,000 ft.lbs.
Max. Push/Pull (crowd force): 44,100 lbs.
Engine: Liebherr V8 Diesel engine, D 9408 Ti-E, 544 HP at 1900 rpm. No additional power packs are required as attachments, can be powered with the machine’s engine.

Liebherr LRB 255
Max. Operating weight: 88 US ton
Leader Length: 80 ft./90 ft./100 ft.
Max. Torque: 217,000 ft.lbs.
Engine: Liebherr V8 Diesel engine, D 9408 Ti-E, 544 HP at 1900 rpm. No additional power packs are required as attachments, can be powered with the machine’s engine. Optional Mercedes Benz engine.

Liebherr LRB 400
Max. Operating weight: 154 US ton
Leader Length: 100 ft./120 ft./140 ft.
Max. Torque: 289,300 ft.lbs.
Max. Push/Pull (crowd force): 132,000 lbs.
Engine: Liebherr V8 Diesel engine, D 9408 Ti-E, 544 HP at 1900 rpm. No additional power packs are required as attachments, can be powered with the machine’s engine. Optional Mercedes Benz engine.

Contact Liebherr for your crane requirements
Liebherr Nenzing Crane Co.
7075 Bennington Street, Houston, TX 77028
TEL. (713) 636 4050 FAX. (713) 636 4051
Email: crawler.crane@inc.liebherr.com
www.liebherr.com
VALIANT STEEL
AND EQUIPMENT, INC.

Steel Pipe Piling & Caissons

6455 Old Peachtree Road
Norcross, Georgia 30071

(770) 417-1235
(800) 939-9905
Fax: (770) 417-1669

No order too big or too small.....SERVICE is our motto.

PPI
Piling Products, Inc.
945 Center Street
Green Cove Springs, FL 32043
(904) 287-8000
Fax (904) 529-7757

Rental & Sales Steel Sheet Piling • Sales & Rental of “H” Bearing Piles • Rental of Hammer/Extractors

www.pilingproducts.com

Protect the Fishery

GUNDERBOOM
Sound Attenuation System (SAS™)

Particulate (Silt) Control System (PCS™) • Design and Consulting Services

In Partnership with Seventy Percent of the Earth

GUNDERBOOM, INC.
210 Hickman Dr.
Sanford, Florida 32771

Ph: 407.548.2200
Fax: 407.548.2230

Ph: 888.345.2666

www.gunderboom.com

Advertiser Index

All American Underpinning & Shoring, Inc.35
American Engineering Testing, Inc.35
American Piledriving Equipment, Inc.OBC
BAUER Equipment USA, Inc.7
Bermingham Foundation SolutionsIFC
Carolina Pole Inc. ..17
Chaparral Steel ...28
Collins Company ..40
Ferreras Equipment LLC40
Ford Pile Foundations, Inc. (Marine Contracting)46
Frank’s ..18
GeoDesign, Inc. ..48
Giken America Corp.44
Goble Engineering ...36
GRL Engineers, Inc. ..26
Gunderboom, Inc. ..48
H&M Vibro, Inc. ..42
Institutech Ltd. ..5
Instantel Vibration Monitors43
International Construction Services, Inc.44
Junttan ...41
Kelly Tractor ..27
Koppers, Inc. ...32
L.B. Foster Company ...IBC
L.H. Bolduc Co., Inc.39
Liebherr Nenzing Crane Co.47
Mandal Pipe Company26
MG & B Services, Inc.37
Mississippi River Equipment Co, Inc.39
Municon Consultants ...32
National Ventures, Inc.23
Naylor Pipe Company33
Nucor Yamato Steel ...38
Pacific American Commercial Co. (PACO)23
PDA Engineering, Inc.21
PDCA of South Carolina34
Pile Dynamics, Inc. (PDI)31
Pileco, Inc. ..3
PilePro ...24, Insert
Piling Products, Inc.48
Sea & Shore Contracting32
Seaboard Steel ...21
Specialty Piling Systems, Inc.17
Timber Piling Council23
Valiant Steel & Equipment48
Foster Drives Today’s Foundation Solutions

• Engineered Piling Solutions
 Open Cell and Combi-Wall

• New Domestic Sheet Piling
 Wider, Lighter, Stronger Chaparral PZC™ Series
 12, 13, 14, 17, 18, 19
 Traditional Sections
 PZ 22RU, 27RU, and 35

• New Foreign Sheet Piling
 Advantageous Strength-to-Weight Ratio Hoesch Series

• H Piling

• Pipe Piling

• Coming Soon! PZ 40
APE Vibrator Driver/Extractors
APE Diesel Impact Hammers
APE Leads & Spotters
APE Hydraulic Impact
J&M Vibratory Driver/Extractors
J&M Hydraulic Impact

Putting Good Ideas To Work!
World's Largest Deep Foundation Equipment Manufacturer

www.apevibro.com
www.jandm-usa.com